BEST: International Journal of Management, Information \

Technology and Engineering (BEST: IJMITE)

ISSN(Print):2348-0513; ISSN(Online): 2454-471X; Eﬁi} eJt(?W‘i‘!('i.orr'nals
Vol. 3, Issue 10, Oct 2015, 25-42 !

© BEST Journals /

PERFORMANCE EVALUATION OF THREE EVOLUTIONARY ALGORI THMS FOR
SELECTIVE HARMONIC ELIMINATION IN VOLTAGE SOURCE MU  LTILEVEL
INVERTER

ADEYEMO, I. A, OJO, J. A. & ADEGBOLA, O. A
Department of Electronic & Electrical Engineerihgdoke Akintola University of Technology,

PMB, Ogbomoso, Oyo State, Nigeria

ABSTRACT

In Selective Harmonic Elimination-Pulse Width Moatibn (SHE-PWM) technique, optimal switching anghes
fundamental switching frequency are computed sheh fow order harmonics are eliminated, while thadamental
voltage is obtained as desired. In this papergcaluny optimization (ACO), particle swarm optimigat (PSO), and real
coded genetic algorithm (RCGA) were implemented aachpared for solving selective harmonic eliminati&GHE)
equations of an 11-level inverter. Using the samgufation size and the same step size of modulatidex, performance
evaluations of the three methods show that PSQedsfdstest, RCGA are is the most efficient in tewhdow order
harmonic elimination while ACO is the most efficién terms of minimization of total harmonic didion (THD) over a

wide range of modulation indices. Computationalltssare validated with MATLAB simulations.

KEYWORDS: Multilevel Inverter, Ant Colony Optimization (ACOPRarticle Swarm Optimization (PSO), Real Coded
Genetic Algorithm (RCGA)

INTRODUCTION

Multilevel power conversion is a rapidly growingear of power electronics with good potential fortlier
development. The concept of utilizing multiple smalltage steps to perform power conversion wastbped from the
idea of step approximation of sinusoid [1]. Thequa structure of multilevel converters enables d¢bastruction of
relatively high power converters with improved hamt spectrum using relatively low power semicoridualevices.
This has resulted into the ability of the convestey meet stringent power quality and high powenaeds. There are
several advantages to multilevel power conversippr@ach when compared with the traditional two-lepewer
conversion.The smaller voltage steps yield lower switchingskss improved power quality, lower electro-magnetic

interference (EMI), lower voltage change rate (ty/dnd lower torque ripple [2], [3].

Harmonic elimination in multilevel converters haseh the focus of intensive research for many decabe
improve converters performance and output powelitgyuaeveral modulation techniques used in conesiat two-level
inverter have been modified and deployed in muéileinverters. These include sinusoidal pulse widthdulation
(SPWM), selective harmonic elimination (SHE) methepace vector control (SVC), and space vectorepuilth
modulation (SVPWM) [4]. SHE method at fundamentaitshing frequency however, arguably gives the bresult
because of its high spectral performance and ceraditly reduced switching loss. Selective harmolaigieation (SHE) or
programmed pulse width modulation scheme is a kwitctechnique for inverters that provides direahteol over the

output waveform harmonics. In this method, the chiitg angles are chosen (programmed) to eliminatected
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harmonics while the fundamental harmonic is satisfiThe implementation of this technique involvelsiag S number of
equations in order to eliminat&+1)selected low order harmonics. With the increasingber of equations, the inverter
voltage waveform approaches a nearly sinusoidakfeam with low harmonic distortion. However, the joradrawback
of this approach is the heavy computational buiidgnlved in solving the transcendental nonlineanagtpns known as

SHE equations that characterize the harmonics.

Several methods that have been reported for soSHE equations can be classified into two grougee first
group is based on deterministic approach usingteadgorithms. Newton Raphson iterative method Ebpne of these.
The main disadvantage of iterative methods is ttey diverge if the arbitrarily chosen initial vakiare not sufficiently
close to the roots. They also risk being trappeddal optima and fail to give all the possiblewgimin sets. The theory of
symmetric polynomials and resultants [6] has beepgsed to determine the solutions of the SHE éoustA difficulty
with this approach is that as the number of lewatseases, the order of the polynomials becomeg kigh, thereby
making the computations of solutions of these potgial equations very complex. Another approach uakdsh
functions [7], [8], [9] where solving linear equatis, instead of non-linear transcendental equatiopiimizes the
switching angle. The method results in a set oéladgic matrix equations and the calculation of dp&mal switching

angles is a complex and time-consuming operation.

The second group is based on probabilistic apprasahg heuristics that minimize rather than elingnthe
selected harmonics. Population-based evolutiondggrithms (EAs) such as genetic algorithm [10], tigég swarm
optimization [11], ant colony system [12] and bégodathm [13] have been reported for computing smétching angles
that eliminate 5 and 7" harmonics in 7-level inverter. The main benefit€as are improved convergence and the ability
to find multiple solution sets over a wide rangarafdulation indices. These can be attributed tqotrallel nature of EAs
i.e. a search through a population of solutiondaathan a sequential search for individual sohgjoas in iterative
method. EAs are derivative free and are successfubcating the optimal solution, but they are udbBualow in

convergence and require much computing time.

MULTILEVEL INVERTER

*  Multilevel Inverter Topologies

The three main multilevel inverter topologies ariedeé-clamped inverter which is based on neutrahtpoi
converter [14], flying capacitor inverter [15], andscaded H-bridge inverter [16]. With increasingnber of levels, flying
capacitor inverter becomes more difficult to realiecause each capacitor has to be charged wighnedtif voltages while
diode-clamped inverter suffers from DC link voltagebalancing problem. Among the topologies, castdderidge
inverter with separate DC sources requires thet leamber of components. Its modular structure aincuit layout

flexibility make it suitable for high voltage anégh power applications.

Cascaded H-bridge multilevel inverter (CMLI) consisf a number of H-bridge inverter units with segpa DC
source (SDCS) for each unit. The units are condeicteseries as shown in Figure 1 for an N-levekiter such that the
synthesized output voltage waveform is the sunildha individual H-bridge outputs. The number aftjput phase voltage

levels in a cascaded H-Bridge inverter is giverNB2S +1, whereSis the number of cascaded H-bridges per phase.
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Figure 1: Single-Phase Structure of an N-Level Caaded H-Bridge Multilevel Converter

Each H-bridge unit can produce three voltage levels, , zero, and, ¥,. by different combinations of the four
switchesS, S,, S,, and S, shown in the Figurel. To obtainvt , switchesS and S, are turned on, wherea¥;-can be
obtained by turning on switcheég ands,. By turning onS ands,, or S,ands,, the output voltage is zero. By connecting

a sufficient number of units in cascade and usingappropriate modulation scheme, a nearly sinukoidkage is
produced. Shown in Figure 2 is the output phastagelwaveform of an 11-level inverter. The expas$or the output

phase voltage is given by
Van = Val + Vaz + Va3 + Va4 + VaS (1)
 Mathematical Model of SHE-PWM

Generally, any periodic waveform such as the saagcwaveform shown in Figure2 can be shown to be th
superposition of a fundamental signal and a sehavfmonic components. By applying Fourier transfdroma these
components can be extracted since the frequenepaatf harmonic component is an integral multipl@éofundamental
[17].

TV,

Figure 2: Output Voltage Waveform of an 11-Level liverter
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Assuming a quarter wave symmetry and equal amgitfdall DC sources, the Fourier series expansfaine

staircase output voltage waveform shown in Figuiedlven by equation (2).

V(at) =V, (a)sin(net) 2)

Wheren is the harmonic order, Ms the amplitude ofth harmonic, and the switching angles are conschin

between zero andr/2 Due to odd quarter-wave symmetry; harmonics wittnesrder become zero. Hencgi¥ given by

V,(a) = %zzﬂcos@ak) for odd n 3)
V,(a)=0, for even n 4)

Sin egn. (3) is the number of switching angles. Gornmg equations (2), (3) and (4)

Mo (cosfia,) +cosha,)+... +cosna,))sinnat)

V@) =5 ©)

Subjectto0<a, <a,<..a,<7,

The objective of SHE-PWM is to eliminate the loveeder harmonics which are more harmful and morkcdit
to remove with filter while higher order harmona® removed with low pass filter. In an 11-leveldrter, there are five
H-bridges per phase which translate into five degref freedom or switching angles. One degreeexfdom is used to
control the magnitude of the fundamental outputag# while the remaining four degrees of freedoenused to eliminate
low order harmonics starting froni°3rder for single phase applications or from tfeosder for 3-phase applications

equation. Ideally, given a desired fundamentalag#t\4, the switching angles are determined such thabébpmes
V(at) =V, sin(at) (6)

From equation (5), the expression for the fundaaienitput voltage Yin terms of the switching angles is given

by

V, = %(cos(yl) +cosf,)+...+ cos(ys))
T Q)
The relation between the fundamental voltage aadrtaximum obtainable fundamental voltagg.¥is given by
modulation index. The modulation index;, s defined as the ratio of the fundamental outmltage \, to the maximum
obtainable fundamental voltage Y. The maximum fundamental voltage is obtained walkmhe switching angles are

zero [5]. From equation (7),

4sV,
Vlmax = n_d (8)
O m = Vl = 7N1
Vlmax 48\/dc
Hence,
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Vlzm[&;é‘:J for 0<m <1 9)

In balanced three-phase power system, the tripEnménics in each phase need not be cancelled &s the
automatically cancel in the line-to-line voltages)d as a result only non-triplen odd harmonics @esent in the
line-to-line voltages. So, to satisfy fundamentatrhonic and eliminate"s 7", 11", and 1% order harmonics that
constitute the low order harmonics in an 11-levelerter, the appropriate modulation index and dviiilg angles are
computed by solving the transcendental nonlinearagégns known as SHE equations that characterigestiected

harmonics[5], [6]:

% (cos@,) +cos@,)+...+cos@,)) =V,

cosba,) + cosba, )+ ...+ cosba;) =V,

cos(/a,) +cos(fa,)+...+cos(fa;) =V,
cos(la,)+cosla,)+...+coslla;) =V,
cos3a,) +cos3a, ) +...+ cosl3a,) =V, (10)

In egn. (10), ¥, Vs, Vi, and Vs are set to zero to in order to eliminatd 5" 11" and 13 harmonics

respectively. The correct solution must satisfydbadition
0<a,<a,<.<a;<7, (11)

Equation (9) in equation (10) yields:

cos@,) +cos@, )+...+cos@,) =5m cosba,) +cos&a,)+...+cosba,) =0 cosfa,) +cos(ia,)+...+ cos{a,) =0
cos(la,) +coslia,)+...+ coslla,) =0 cos(L3a,) +cos(3a, )+...+cos(L3a,) =0 (12)

Generally equation (12) can be written as

Fo)= em)

(13)

The Total Harmonic Distortion (THD) is computedsi®wn in equation (13):

THD =

(13)

OPTIMIZATION TECHNIQUES
* Ant Colony Optimization (ACO)

The ant colony optimization is swarm intelligenasbéd meta-heuristic algorithm that was inspiredhgyfood
foraging behavior of natural ants. It is a probiabd technique for solving combinatorial optimizeat problems that can
be reduced to finding good path through graphs.[¥8O algorithm has been extended to solving cowtirs
combinatorial optimization problems using a variefyACO algorithm called variable sampling ant eotaoptimization

(SamACO) algorithm [19]. SamACO algorithm offers efficient incremental solution construction methmabed on the

Impact Factor(JCC): 0.9458- This article can be dowloaded from www.bestjournals.in



30 Adeyemo, I. A, Ojo, J. A. & Adegbola, O. A

sampled values. The basic idea behind SamACO #igoris that a population of agents (artificial anterementally

constructs solution to the sampled combinatorigihaipation problem.
The steps that are involved in the implementatio®amACO algorithm are as follows:
Initialization Step

The search space is bounded such that the decisiamables (solution components) ; Xhas

valuesx, O[l,,u;],i =12...,S, wherel, and u, are the lower and upper bounds of the decisioralies Xrespectively, and

S is the number of decision variables. The initialues of the decision variables are randomly sasnplethe feasible
domain as follows:

X =1, + 2 ;Ii (j-1+rand?) (14)

Where P is the initial number of candidate values dach decision variabk, rand is a random number
uniformly distributed within[0,1], i=12,...,S andj=12,...,P. SamACO uses a population, of size P divided into t
pools such tha® =m+J, mis the number of ants} is the exploitation frequency which controls thener of values to
be sampled in the neighborhood of the best-sodlatien per iteration,

For each decision variabl , there arek sampled value®, x?, ..., x*’from the continuous domajinu,|.
Each solution component has associated a pherownaioe, 7/, i=12...,S,j=12...,k , and a component-pheromone

matrix M can be generated. The pheromone valueflects the desirability of adding the componealue x’to the

solution
[ 70} {0 7). {0, 79}
bt b))
: : I (15)
b ) ) )
Transition

The transition of the ants from one position tothao is partially probabilistic and partially dat@nistic. The

transition rule favours either exploration or exg@ton. An artificial antk has a memory of the positions that it has

already visited and the pheromone content at eacdtion stored in a Tabu list. The memory size of the Tabu list

depends on the ant population size as well as dihebar of movement made by the ants. In gener#heife arem ants

making N movement, the size of the Tabu Iist(isx N). The iteration index’ of the variable value selected by anfor

the i " variable is:

1 if g<q, and j=j°

=40 if g<q, and j=zj" (16)
LY it g>q,

Where
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j"=arg max{ri(l), ri(z), e ri(’“)} a7)

i=12..,s, k=12..,m,q0[0]is a uniform random value, and,0[0,1] is a threshold parameter that

represents the relative preference for either ébgtion or exploration.

Dynamic Exploitation
Wheng < q,, the ant chooses exploitation in the neighborhobthe solution set with the highest pheromone

value from them solutions generated in the previous iteration. d@ixeamic exploitation is used as a local search ateth

to fine-tune the best-so-far solution. A radiys confines the search in the neighborhood of the-s®dar solution

X0 = (x9, %2, -, x°) to the intervalx® -1, x? +r|, i=12--,S. The values of the variables in the best-so-fautism

S

set are randomly selected to be increased, uncangeduced as

min(x© +1, .0, u,) Osq<%

X, = x© £ q< 2 (18)
3 3
max(x® -, .0, 1,) %Sq<l

Wheres0[0,1].

The best-so-far solution set is then updated usiiigm and generational replacement. The new woluset
x=(%,%,--, %) is evaluated and used to replace the best-sosfatian set if there is an improvement in the resul
The dynamic exploitation process is repeatedfdimes, and the newly generated solution componamgsecorded as
x7, wherej =m+1m+2-.-,m+g,, i=22...,.S. The number of solution components generated dutiie dynamic
exploitation process is denoted gyy The radii are adaptively extended or reduced dasethe exploitation result. If the

best solution set produced by the exploitation @ssds better than the prevailing best-so-far Eoiwtet, the radii will be

extended. Otherwise, the radii will be reduced.

r.v,, v, >1
req' ° N (29)
L.V, O<v, <1

Wherev,and v, are the radius extension rate and the radius rigsute, respectively. The initial radius value is
given by:

u -l (20)

Random Exploration
Wheng > g, , the ant resort to probabilistic exploration téesea random indeMk) D{O;L~~,m+ gi} . Moving from
positioni , the ant chooses its next positiohamong the positions that have not been visited ageprding to the

probability distribution given as follows:
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pi(i): : j=0 1., m+g; (21)
T,

The solution components of the wopstsolution sets that are constructed by the antisdrprevious iteration are
discarded and each solution component is replage® mew values generated by a random exploration psodéthe

worst solution sets are denoted X5y, x™? ... x™  The new solution components for the solution sétare

randomly generated as follows:
X =1 +(y -1,).rand?” (22)
Wherei =1,2,...,Sandj = (m-x+1), (m-x+2), ..., m.
Random exploration ensures diversity and prevenre@ature convergence to local minima.

Pheromone Update

Initially, each solution component is assigned ritial pheromone valug,. The pheromone values are updated

based on the quality of solutions constructed leyathits. The update is biased towards the best@wutonstructed by the
ants such that ACO concentrates the search irethiens of high quality solutions. Similar to MAX-Mlant system [20],

the pheromone values in SamACO algorithm are balitwléhe interve,,, T..]; in this cas¢ol, 1.

The pheromones on the non-optimal paths are evigabrahe selected non-optimal solution componentsh

their pheromones evaporated as
0 (1-p)t@ +pr,,  for 0<p<1
i=142..,Sand j=12....m (23)
Wherer, is the predefined minimum pheromone value and the pheromone evaporation rate.

The pheromones on the near optimal paths are regdo thus influencing more ants to follow the ga#ind
hopefully find better solutions. The solution compats in the selected best solutions have their pheromone reinforced

as
Ti(j) - (1_:B)Ti(j) +:BTmax for O<IB<1 (24)
i=12...,Sandj=12...,¥

Where, is the predefined maximum pheromone valgejs the pheromone reinforcement rate, ands the
elitist number.
» Particle Swarm Optimization (PSO)

Particle swarm optimization is a swarm intelligeesed algorithm that was inspired by the sociabb®r in a
flock of birds or a school of fish. In PSO, an iaitpopulation of potential solutions to the optzation problem called
particles is randomly generated. Each particleswarm searches for the best position in the sespabe, while the social

behavior that is modeled in PSO guide the swaritihéooptimal region. Each particle in the searctcepa assigned a
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randomized position and velocity. During successtegation, the current position of each partiaethe swarm is
evaluated with an objective function, and eachigartkeeps track of its coordinates in the problgmace, which are

associated with the best solution (fitness) that# achieved so far.

Based on the fitness evaluation of all the parictae best position so far of tHéparticle in a d-dimensional

space is called personal beBbés}), and is denoted by =[p,, p,,...., P41, While the overall best position obtained so far
by any particle in the swarm is called global l&ibes}, and is denoted Wy, =[p,,, P ,..... P,]. This implies that each

particle has a memory which enables it to upda&eiirrent position and velocity according to thstatice between its
current position andPbest as well as the distance between its current ipasandGbest If the velocity and position

vectors of the particle at iteration k are representedvas [v,,, V., ,....v,] andX, =[x,, x,,....x,], respectively, then the

velocity and position of the particle in the netetration are determined as follows:
Vi (k+1) = wy, (k) + c,i[ p (k) = X (K)] +Gu[ R (K% K] (25)
X (k+D) =x (k) +v(k+1) (26)

where w is the inertia weight parameter that presidhe balance between global exploration and local

exploitation capabilities of the particle,(k) is the velocity of the particle at iteration k;(k) is the position the particle at
iteration k; c,and c, are constants known as cognitive and social caeffis, respectivelyy, and r, are random values

uniformly distributed within [0, 1] [21].
The steps that are involved in the implementatibR®0 algorithm are as follows:
« Randomly generate an initial population of parscebject to eqn. (11).
» Perform the fitness evaluation of the particles
» Update the personal best position Pbest and gh#sdlposition Gbest.
» Evaluate the velocity of each particle
» Compute new position of each particle using theatgdl velocity.
» Repeat the algorithm until any of the stoppingetiit is met.
Real Coded Genetic Algorithm (RCGA)

Genetic algorithm (GA) is an evolutionary algorittinat was inspired by the study of genetics andigairof the
fittest through the evolution mechanism observeddtural systems and population of living beingseOsuccessive
generations, the parameters of a randomly creaigdlipopulation of individuals, or potential stibns to the problem
called strings or chromosomes are repeatedly neatify GA operators to create new (and hopefulliebepopulation of

solutions [22].
The steps that are involved in the implementatibR@GA algorithm are as follows:
Chromosome Representation

In an 11-level inverter, there are five switchinggkes which translate into five genes in a chromueso
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Each chromosome (potential solution) of the trandeatal nonlinear equations is encoded as a réz¢ vaimbers of the

same length as the dimension of the search space.
Initialization

An initial population of chromosomes is randomlyngeted. The generated chromosomes are uniformly

distributed between the lower and upper limitshef $witching angles by satisfying eqn. (11)
Selection

GA begins the creation of new generation with thlection of chromosomes from the parent populatiased on
their fitness evaluation. The fitness functionhs function that is responsible for the evaluatérthe solutions at each

step
Crossover

Crossover operator is the main genetic operatat,itais applied with certain probability. Chromoserparts of

selected parents are swapped to form new offsfointhe next generation.
Mutation

In order to introduce diversity and prevent premaionvergence, the genetic properties of the rféspring are

deliberately altered with a low mutation probalilit

The process of selection, crossover, and mutasaoepeated until a maximum number of generatiomeashed

or until the objective function has reached a preskie.
IMPLEMENTATION

Using MATLAB software, SamACO, PSO and RCGA alduris were implemented to compute the optimal
switching angles that eliminatd’57", 11", and 18 harmonics in an 11-level inverter. In this worke tsame population
size of 40 was used for the implementation of tired algorithms, and the same number of iterai®Ai§0. The genetic
operators adopted for RCGA are tournament selectiearistic crossover at the rate of 0.8, and dyoamnon-uniform

mutation at the rate of 0.02. Solutions were comgdior the three algorithms by incrementing the utatibn index,m in

steps of 0.001 from 0 to 1. A personal computeB&25Hz Intel Core i7 processor with 4GB Random Ascklemory)
running MATLAB R2014b on OS X Yosemite version 1\as used to carry out the computations.

The solution set at each step is evaluated withfithess function. The objective here is to detemnthe
switching angles such that the selected low ordembnics are either eliminated or minimized to eceptable level while
the fundamental voltage is obtained at a desirdakevdor each solution set, the fitness functionakulated as follows
[12]:

f =min {[mov{v",vlj +§2hi[50\\//ij }
i=12...8 @7)

Subject to eqn.(11)
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WhereV | is the desired fundamental output voltage, S istimaber of switching angleig,is the order of thes"
viable harmonic at the output of a three phaseilewil converter. For example,=5, h,=11. It should be noted that

different weight are assigned to different harmenie egn. (25). Each harmonic ratio is weightediiyerse of its
harmonic order, i.e. 1{hBy this weighting method, higher importance isigised to the low order harmonics, which are

more harmful and difficulty to remove with filter.

In order to validate the observed analytical resudin 11-level single-phase Cascaded H-Bridge tewvevas
modelled in MATLAB-SIMULINK using SimPower Systenldek set. In each of the five H-Bridges in the &vdl
single-phase Cascaded H-Bridge inverter, 12V decsois the SDCS, and the switching device usedsslated Gate
Bipolar Transistor (IGBT). Fundamental frequencyitshing scheme was adopted in this work becausés dimplicity
and low switching losses. Simulations were perfatraé the same arbitrarily chosen modulation ind&x.622 using
solution sets previously calculated offline wittckaf the three algorithms. Fast Fourier TransfQifT) analysis of the
simulated phase voltage waveforms was performegshéav the harmonic spectra of the synthesized wavef@and the

corresponding THD value of each solution set waasueed using the FFT block.
RESULTS AND DISCUSSIONS

Among the three algorithms, PSO is the fastest aittrage execution time of 453.02s, compared watn/SCO
and RCGA with average execution time of 1.94e+085 246e+03s, respectively. The plots of fithesxfion for each
set of switching angles versus modulation index ¢lre range of 0.1 to 1.0 are shown in Figure ufé 6 and Figure 9
for SamACO, PSO, and RCGA, respectively. Solutiets svith fitness value greater than“lére rejected. When the

fitness function at a modulation index is?dr less, the corresponding switching angles ansidered as a solution set.

Shown in Figure 4, Figure 7, and Figure 10 areplbés of switching angles that minimiz&,5", 11", and 1%
harmonics in an 11-level inverter for SamACO, P84 RCGA, respectively. It can be seen from tharég that there
are multiple solution sets at some modulation ieslidn such cases, THD is computed for each ofthlktiple solution

sets and the set with the least THD value is chaséintermed as a combined solution set.

As can be observed from the THD curves of the smlusets plotted in Figure 5, Figure 8, and Figutefor
SamACO, PSO, and RCGA, respectively, the valueb@®#d' order THD are higher at lower modulation indicesiler
they are considerably reduced at the upper endodutation index. The plot of #3order THD shows how efficiently the
selected harmonics are minimized. Comparative stfdyigure 5, Figure 8, and Figure 11 reveals thdy SamACO
finds multiple solution sets with #%rder THD that is less than 5% below modulaticttein of 0.85. However, 13order
THD are minimized rather than eliminated in mostasa None of the solution sets found with both RE@RCGA below
modulation index of 0.85 meets IEEE-519 standdrdhduld be noted that more solution sets are fauitld RCGA, and

the selected low order harmonics are well attemliatenost cases.
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Figure 4: Switching Angles Versus Modulation IndeXor 11-Level CMLI Using Sam ACO
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Figure 6: Fitness Function Versus Modulation IndeXor 11-Level CMLI Using PSO
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Figure 8: THD Versus Modulation Index for 11-LevelCMLI Using PSO
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Figure 10: Switching Angles Versus Modulation IndexXor 11-Level CMLI Using RCGA
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Figure 11: THD Versus Modulation Index for 11-LevelCMLI Using RCGA

Shown in Table 1 are the values of the switchingles computed for the modulation index of 0.92hgsi

SamACO, PSO and RCGA algorithms.

Table 1: Solution Sets at Modulation Index of 0.922

s e Switching Angles at Modulation Index of 0.922
al al al al
Technique a, a, a, a, a,
SamACO 6.550 7.100 17.371 27.139 39.1778
PSO 0.000 9.680 18.584 25.499 39.766
RCGA 1.964 9.394 18.675 25.460 39.774

The analytically computed peak value of the fundatale output voltage given by eqgn. (9) is

\A =m(4s—7\ﬂ: 092{ 4x?Tx12J= 7043,y Which closely agrees with simulation values of3B¥, 70.35V, and 70.31V

for SamACO, PSO, and RCGA, respectively.

e

Figure 12: FFT Plot of Sam ACO Solution set aim = 0922

Fundamenta (50H2) - 035, THD= 16.97%

NNNNNNNNN

Figure 13: FFT Plot of PSO Solution Set atn = 0922
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Figure 14: FFT Plot of RCGA Solution Set atm = 0922

Shown in Table 2 is the comparative study of thalyital and simulation values of the™8rder THD of the
three algorithms. From the table, it is appareat SO and RCGA are more efficient than Sam AC@eims of the

selected harmonics elimination.

Table 2: 13" Order thd (%) of the Simulated Voltage

Optimizationn 13" Order THD (%)
Technique Analytical Value | Simulation Value
SamACO 1.14 1.13
PSO 0.63 0.64
RCGA 0.63 0.74

The comparative study of the analytical and sinoatvalues of the 49order THD of the three algorithms is

presented in Table 3.

Table 3: 49" Order Thd (%) of the Simulated Voltage

Optimizationn 49" Order THD (%)
Technique Analytical Value | Simulation Value
SamACO 4.28 4.29
PSO 5.02 4.30
RCGA 4.31 3.74

It can be seen from the tables that the simulatédues closely agree with the analytical valueshtiuld be noted
that THD values of 17.12%, 16.97%, and 16.61% hoava in Figures 12, 13, and 14, respectively; #eson for this is
that the THD values shown are for phase voltagashainclude triplen harmonic components while atieg} values are

for line voltages which exclude triplen harmonicrgmnents.
CONCLUSIONS

Three population-based algorithms with randomahitalues have been successfully implemented foimgpthe
transcendental nonlinear equations characteriiedgharmonics in an 11-level inverter. The algorihame derivative-free,
accurate and globally convergent. Performance atialu of the three methods shows that PSO is thiedg RCGA is
most efficient in terms of low order harmonic eliation while SamACO is the most efficient in terrms THD
minimization over a wide range of modulation indicénalytically observed results are validated vgimulations and

both are in close agreement.
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